LogitBoost autoregressive networks

نویسنده

  • Marc Goessling
چکیده

Multivariate binary distributions can be decomposed into products of univariate conditional distributions. Recently popular approaches have modeled these conditionals through neural networks with sophisticated weight-sharing structures. It is shown that state-of-the-art performance on several standard benchmark datasets can actually be achieved by training separate probability estimators for each dimension. In that case, model training can be trivially parallelized over data dimensions. On the other hand, complexity control has to be performed for each learned conditional distribution. Three possible methods are considered and experimentally compared. The estimator that is employed for each conditional is LogitBoost. Similarities and differences between the proposed approach and autoregressive models based on neural networks are discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABC-LogitBoost for Multi-class Classification

We develop abc-logitboost, based on the prior work on abc-boost[10] and robust logitboost[11]. Our extensive experiments on a variety of datasets demonstrate the considerable improvement of abc-logitboost over logitboost and abc-mart.

متن کامل

Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost

Logitboost is an influential boosting algorithm for classification. In this paper, we develop robust logitboost to provide an explicit formulation of tree-split criterion for building weak learners (regression trees) for logitboost. This formulation leads to a numerically stable implementation of logitboost. We then propose abc-logitboost for multi-class classification, by combining robust logi...

متن کامل

Customer credit quality assessments using data mining methods for banking industries

Personal credit scoring on credit cards has been a critical issue in the banking industry. The bank with the most accurate estimation of its customer credit quality will be the most profitable. The study aims to compare quality prediction models from data mining methods, and improve traditional models by using boosting and genetic algorithms (GA). The predicting models used are instant-based cl...

متن کامل

An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost

This empirical study is mainly devoted to comparing four tree-based boosting algorithms: mart, abc-mart, robust logitboost, and abc-logitboost, for multi-class classification on a variety of publicly available datasets. Some of those datasets have been thoroughly tested in prior studies using a broad range of classification algorithms including SVM, neural nets, and deep learning. In terms of t...

متن کامل

Induction of descriptive fuzzy classifiers with the Logitboost algorithm

Recently, Adaboost has been compared to greedy backfitting of extended additive models in logistic regression problems, or “Logitboost". The Adaboost algorithm has been applied to learn fuzzy rules in classification problems, and other backfitting algorithms to learn fuzzy rules in modeling problems but, up to our knowledge, there are not previous works that extend the Logitboost algorithm to l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2017